

Side-Mount Shuttle Derived Vehicle Concepts Have Matured Via Several Major Design Studies

HLV Configuration

- 4,544,684 lb at liftoff
- 647 psf max q
- 3.0 g max

- 7.5-m inner diameter payload carrier
- Modified Shuttle boat tail / Avionics
- Existing 4-segment RSRBs
- Existing ET design

Design Approach

Two block design approach:

- Block I fly existing Shuttle assets, avionics and software
 - No change to External Tank
 - No change to Solid Rocket Boosters
 - No change to SSMEs
 - Use existing Avionics
 - Use existing Flight Software
 - Use/modify SEI tools (Acoustic, Aerodynamic, Structures, Loads)
 - Existing pad structure
 - Launch and Ground Control software
 - Simplify High-risk aft interface
 - Delete Fuel cells, Cryo, Nitrogen, Cooling systems, OMS, RCS systems
- Block II Block I upgrade to fly new capabilities as Shuttle spares run out

Use Existing Space Shuttle Infrastructure/Facilities

Block I & Block II HLV Carrier Design Payload Envelopes

Systems Architecture Phasing Strategy

One Fault Tolerant	GNC	DPS HW	DPS SW	C&T	Instru- mentation	EPD&C	APU/HYD	ECLSS/ATCS	MPS
Block I	IMU, RGA, AA, ATVC	GPC MDM EIU DBIA	Latest OI FSW revision with minor updates to deliver a new OI release.	NSP COMSEC S-band HW	MTU PCMMU DSC	GCIL EMEC/AMEC AC Inverters PDA Control Assy. New Primary batteries.	APU APU controller Fuel tank & HW Exhaust ducts Hyd Hose & vlvs Servoactuator Accumulator	Manifold & Duct assy	Feedlines Replenish lines FCV Ghe Tank Valves PSE Level sensors Umbilical Assy Manifold Assy
Block I 4-6 flights	Same s Block I	New DBIA *EIU	New Minor FSW updates to accommodate Hardware I/F changes.	New NSP COMSEC. Replace S- band HW with OTS S- band equipment.	Replace MTU with IRIG generator. Develop New/Alt PCMMU.	*Delete AC inverters. Replace PDA and Control Assy	Need to turn on manufacturing of Hyd Hose & vlvs, and servoactuator.	Turn on NSLD production of duct assy's.	NEW MPS HW to support new SSME's. New/Alt PSE and level sensors. Turn on production of O2/H2 manifold assy's.
Block II	New RGA ATVC	New GPC MDM	New Minor FSW updates to accommodate hardware I/F changes and new GPS look- a-like HW.	Use Block I+ hardware	Upgrade DSC's and combine with new MDM's.	Incorporate GCIL function in new MDM/DSC. Upgrade EMEC/AMEC	*Replace hydrazine APU and hyd with electro- mechanical system.	Use Block I+ hardware where required.	Use Block I+ hardware.

^{*} Jointly delete AC and hydraulic requirements from new SSME controllers

HLV SSME Utilization

- The Current Space Shuttle Main Engine (SSME) [also Known as RS 25] has a well established engineering History
 - More than 100 flight engines with over 1million seconds of hot fire time
 - Well known reliability in all modes of operation, i.e. start, run @ 100% run @ 104.5%, 106%, 109%, Engine Shutdown
 - Established knowledge base for manufacturing, test and integration into flight vehicle
- Hardware is readily available for Block I and Test Flights
 - Currently 14 flight engines supporting the SSP
 - Existing inventory of hardware to support HLV
 - Hot fire test stands exist to support HLV use of SSME
 - KSC infrastructure exists to support HLV use of SSME
- RS 25E (Expendable) has been extensively studied
 - Channel Wall Nozzle, Non-refurbished turbopumps, Reduced Inspection

HLV \$ROM Cost Estimates DDT&E

HLV Development Schedule

Initial ISS Logistics Design Reference Mission

- Use available Shuttle assets:
 - -SSME, RSRM, ET-122 (139, 140, 141, 94)
 - -Flight Software, Avionics
 - -APU's, TVC, MPS
- Fly Shuttle Launch Profile
- New 7.5m Payload Carrier (PLC)
- Payload
 - Barge/Pallets
 - MPLM (expend) + Unpressurized logistics
- Barge delivers ISS payloads and then deorbits expendable payloads

HLV Flight Profile for ISS DRM

Design Reference Mission

HLV-CEV Option 2 - ISS Crew & Logistics

HLV to 51.6 deg MECO: 72 mt

- Orion w/o LAS: 21.2 mt (full propellant load)
- ASE Structure w/docking adapter: 16 mt (estimated)
- 120 nmi circularization propulsion: 1.6 mt
- MPLM: 13.2 mt
- Available: 11.3 mt (unpressurized logistics w/carriers)
- Aft mounted propulsion conducts 160 ft/sec circularization burn (GNC by Orion)
- Orion separates from logistics carrier docks with forward adapter on ASE frame
- Orion propulsion used for all subsequent orbit maneuvers to and from ISS
 - Sufficient propellants in lunar version Orion Service Module for maneuvers

Block II HLV ISS Crew & Logistics Launch

Payload Volume

Net LEO payload

Gross liftoff mass = 4,541,316 lb Payload = 21 mt CEV + 25 mt Logistics 120 nmi east orbit from KSC

7.5 m x 25 m

72 mt

Block II HLV Heavy-lift Flight Profile –Lunar Lander

Block II HLV Heavy-lift Flight Profile - Orion

Block II HLV Split Mission LOR Human Lunar Scenario

HLV Characteristics

Vehicle Characteristics	Block I HLV - Cargo	Block II HLV - Cargo	Block II HLV - Crew	
First Stage Boosters Gross Mass Burnout Mass Useable Propellant # of Engines/ Type Engine Thrust (each) Stage Engine Isp	2,596,932 lbm	2,596,932 lbm	2,596,932 lbm	
	385,227 lbm	385,227 lbm	385,277 lbm	
	2,211,705 lbm	2,211,705 lbm	2,211,705 lbm	
	2 x 4-segment SRB	2 x 4-segment SRB	2 x 4-segment SRB	
	2.94 Mlbf @ SL	2.94 Mlbf @ SL	2.94 Mlbf @ SL	
	267 s @ Vac	267 s @ Vac	267 s @ Vac	
External Tank Gross Mass Burnout Mass Usable Propellant	1,662,895 lbm	1,664,095 lbm	1,664,095 lbm	
	73,111 lbm	74,311 lbm	74,311 lbm	
	1,589,784 lbm	1,589,784 lbm	1,589,784 lbm	
Propulsion/Carrier Main Propulsion Gross Mass # of Engines/ Type Engine Thrust (each @ 104.5%) Stage Engine Isp 7.5-m internal dia Carrier Mass	57,398 lbm	57,398 lbm	57,398 lbm	
	3 x SSME	3 x SSME	3 x SSME	
	396,569 lbf SL; 490,847 lbf Vac	396,569 lbf SL; 490,847 lbf Vac	396,569 lbf SL; 490,847 lbf Vac	
	452.19 s	452.19 s	452.19 s	
	50,994 lbm (includes ASE)	53,980 lbm (includes ASE)	48,060 lbm (includes ASE)	
Upper Staqe Gross Mass Burnout Mass Usable Propellant # of Engines/ Type Engine Thrust Stage Engine Isp	Stage at MECO (59.6 nmi) 30 x 120 nmi orbit (Upper stages determined by mission types)	Stage at Mach 17.2, 59.7 nmi 364,988 lbm 37,942 lbm 327,046 lbm 1 x J-2x 293,750 lbf Vac 448.0 s	Stage at Mach 19.1, 55.3 nmi 363,621 lbm 36,575 lbm 327,046 lbm 1 x J2-X 293,750 lbf Vac 448.0 s	
Total LV Gross Liftoff Mass Gross Delivery (120 x 120 nmi) Net payload (@28.5 deg) Net payload = gross delivery	4,544,684 lbm	4,847,644 lbm	4,793,559 lbm	
	174,454 lb (79.1 mt)	198,735 lbm (90.1 mt)	203,049 lbm (92.1 mt)	
	157,008 lb (71.2 mt)	178,862 lbm (81.1 mt)	182,744 lbm (82.9 mt)	
	reduced by 10%	(Orbited EDS not included)	(Orbited EDS not included)	
Flight Conditions Max dynamic pressure Max acceleration Liftoff Thrust/Weight Jettison upper carrier fairings	647 psf 3.00 gs 1.57 22,883 lb @ 185 sec	616 psf 2.31 gs 1.47 22,883 lb @ 185 sec	Jettison 14 Klb LAS at 155 sec 639 psf 2.56 gs 1.48 18,306 lb @ 185 sec	

Manifest

HLV Growth Options

The HLV has growth potential up to 91.9 mt (net payload) as shown in the following examples:

Lunar Reference Vehicle with 81.1 mt Suborbital Staging (4-seg SRB, 104.5% SSME, J-2X EDS)

SSME at 109% + 2.5 mt

5-segment SRBs + 7.3 mt

SSME EDS + 1.0 mt

Total Potential Lift 91.9 mt

HLV Reliability from the Shuttle PRA

Contributor	High Reliability Scenario	Low Reliability Scenario	
SSME	1 in 300	1 in 250	
RSRM	1 in 1550	1 in 1550	
SRB only	1 in 2104	1 in 2104	
Total SRB	1 in 893	1 in 893	
External Tank	1 in 4762	1 in 4762	
Subtotal (Shuttle Systems Only)	~1 in 214	~1 in 188	
Payload Carrier	~1 in 1400	~1 in 1000	
Total HLV LOV	~1 in 186	~1 in 158	

Assumptions for SSMEs

- 3 SSMEs
- 104% Power Level
- 540 sec. Duration
- No Engine Out Capability
- TBD Carrier Subsystems

Probability of HLV LOC with LAS

SPACE SHUTTLE PROGRAM

NASA Johnson Space Center, Houston, Texas

Payload Separation Designer

Mack

6/**ble/nod**erson^{29 24}

- Spring loaded separation actuator along Payload centerline
 - 20,000 lbs spring rate with a 6 inch stroke (10K lb on each body)
- ET vent forces are used in assist mode
 - ET Tumble Valve put back into the ET and activated
 - 40s and 800 lb vent forces
- SSP worst-on-worst staging ICs

GO2/LH2 Vents
800 lbs
2ft aft of sep
plane
plane

No major Separation issues identified

Near Field Payload Separation –Max Body Rates

SIDE VIEW

MØVING BØDY SHØWN ÅT INTERVÅLS ØF 6.00 SEC, STÅRTING ÅT 524,32 SEC

Body Rates at Separation

P = -0.38 deg/sec

Q = -0.62 deg/sec

R = -0.30 deg/sec

Conclusions

- HLV Design is less capable than the current baseline
- A significant amount of study of this concept is required by the broader community
- Some benefits:
 - HLV makes maximum use of Shuttle assets
 - HLV retains essential contractor and civil servant skills
- Potential support for ISS for both crew and cargo
- Foundational Heavy Lift capability to support a variety of architectures

Backup

Only One Unique New Start for HLV

Element	HLV	Ares 1	Ares 5	Direct
New Core stage			X	X
New Tank			X	X
New Boat Tail	X		Х	Х
New Prop Feed Lines			X	X
New Software		X	Х	X
New RCS		X	Х	X
New Interstage		X	Х	X
New Upper Stage	Х	Х	Х	х
New Upper Stage Engine	X	Х	Х	Х
New 5 or 5.5 segment SRB		X	Х	
New Parachutes		Х	Х	
New Cargo Carrier	Х			
New Fairing	Х	Х	Х	Х
New Main Propulsion			Х	Х
New Launch Abort Systems	Х	Х		Х
Harden Crawler Roadway			Х	
Modify MLP		Х		X
New MLP			Х	
New Launch Tower		Х	Х	Х
Certify Engine (Human Rating)		X	Х	Х
New Payload Processing	Х	Х	Х	Х
New Flame Trench			Х	
New Pad Escape		X		Х
Mods to VAB	Х	Х	Х	х
New starts	8	15	20	18
Total new system starts	8		35	18

Ares 1, Ares 5, Direct Unique New Starts HLV Unique New start